
IndexDOCtoIXML.dotm User Guide v1.1
IndexDOCtoIXML.dotm is a Word macro that converts a
Word document to IXML format, which can then be imported
into indexing software. It runs under PC Word, and works
fine on a Mac running Windows under Parallels. This is an
introduction to the macro, which at this point is version 1.1.

This macro is free and open source; I walk through the code
below. If you improve it, please share your improved version
with the community.

When indexing a new edition of a book, it can be a great
help to have the previous edition index. This utility gets that
previous edition index into your indexing software, saving
typing.

A PDF of the previous edition index needs to be exported to a
Word document.

The index Word document has to be cleaned up: headers,
footers, page numbers, the “Index” title, the headnote, and
any continued lines need to be removed so that the text is
only the index entries.

This user guide provides an overview of the macro, then
shows how to install and use it. After that I walk through the
code itself, loading the macro document as an ordinary Word
document and opening the Visual Basic environment so that
you can see the Visual Basic code. At this point there are no
version changes to report.

Overview
IndexDOCtoIXML.dotm contains a public macro called
IndexDOCtoIXML that shows up when you View Macros in
Word. That’s how it has to be run at this point; there’s no
menu yet.

IndexDOCtoIXML reads through the current Word document
paragraph by paragraph, looking at tabs, indentation, and
styles. It then presents a box that displays the various types
of paragraph formatting with Show Me buttons that highlight
the paragraphs in the document with that formatting.
You select from dropdown lists the types of index entries
represented by the formatting: Is the highlighted entry a
Main, Sub, Subsub, or Subsubsub entry?

Once the selections are made and the Process Index File
button is clicked, the macro applies the appropriate
paragraph style names to the appropriate paragraphs. It then
writes the index file to another document in IXML format.
The IXML document is saved in the same directory as the
index document, with the index document name plus the
IXML extension; a message box displays this information
when the macro finishes. The re-styled index document is
not saved.

Then you follow your indexing software’s procedure for
importing the IXML file.

The italics, boldface, underline, subscript, and superscript
attributes are maintained.

Installing the Macro
You do not need to install the macro to walk through its
code.

The macro needs to be placed in the Startup folder for
Microsoft Word. Try looking on this path (taking away the
square brackets and filling in the appropriate user name):

C:\Users\[User name]\AppData\Roaming\Microsoft\
Word\STARTUP

Another way to find this folder is to open an Explorer
window and paste the following text in the path box:

%Appdata%/Microsoft/word/startup

When you hit Enter, the Startup folder is presented. Put the
IndexDOCtoIXML.dotm file into the Startup folder.

If Word is running, you’ll need to quit and restart Word to
load the IndexDOCtoIXML.dotm macro.

Running the Macro
With your index document open in Word, View Macros, select
the IndexDOCtoIXML macro, and click Run.

A basic message box comes up that explains the macro and
gives you a chance to cancel out or continue.

The macro then analyzes the formatting of each paragraph in
the current document. It then presents its results:

This box may not contain all the elements shown here, if
they’re not present in the index document.

Each type of formatting has a checkbox in front of it that you
can uncheck if for some reason you don’t want a new style
name applied to paragraphs with that formatting.

Removing empty paragraphs can be turned off by removing
the check mark from its checkbox. Replacing en dashes with
hyphens can also be turned off by removing the check mark
from its check box.

If paragraphs with two or one tabs in front are present in the
index document, you can specify the types of index entries
they mark.

Paragraphs that have indents applied are listed next. Word
handles paragraph indents in an odd way, so each type
presented has a Show Me button by it. Clicking on Show Me
highlights a paragraph in the index document with that type
of indentation so that you can see where it sits in the index.

Paragraphs that have styles (but no tabs or indents) are listed
last, again with Show Me buttons so that you can see the
paragraphs being referred to.

For each type of formatting presented, select the appropriate
index entry level from the dropdown list: Main, Sub, Subsub,
or Subsubsub.

When you’ve finished setting all the dropdown lists, click the
Process Index File button.

If you want quit, click Cancel instead.

After the Process Index File button is clicked, the macro then
applies to the appropriate paragraphs your selected index
levels as style names. The index file appearance will change
because of the new style names applied.

Then the macro will open a new document, write out the
index file in IXML format to that new document, then save
that IXML document.

The changed index file is not saved.

Once the IXML is written, the macro puts up a message box
stating where the IXML was saved. The macro ends when OK
is clicked in the message box.

Go to your indexing software and import the IXML file.

Walking Through the Code
You do not have to install the macro to look at its code.

In Word, open IndexDOCtoIXML.dotm as a regular Word
document. When the document opens, you will likely get a
banner across the top that says

SECURITY WARNING Macros have been disabled

with a button that says Enable Content.

You don’t have to enable the content, so don’t click the
button. Click the x on the far right to dismiss the banner.

Click in the blank document then hit Alt-F11 to open the
Visual Basic for Applications development environment.

If you have the macro installed, you will see two
IndexDOCtoIXML projects listed in the Explorer window of
the VBA IDE (integrated development environment).

One won’t let you expand it when you click on it; you’ll get
a message that the project is locked. This is the installed
macro, which you can’t modify.

The other (or only) IndexDOCtoIXML project is the document
you have open in Word. To look at its code, click the pluses
next to each level to fully expand it.

Let’s start with the form. Double-click on the name of the
form, frmProcessIndexFile. The form shows up in the big
code viewing space.

Click on the View menu. The top two items, Code and Object,
alternate between showing this form (the object) or showing
the code behind it (the code).

A form has code associated with it that handles initialization
of variables when the form is displayed: Private Sub
UserForm_Activate().

The “private” here means that this code is only visible to
this project; you won’t see this name when you View Macros.
UserForm_Activate() is an event that is triggered when the

form is displayed, which happens in the midst of the main
procedure, as we’ll see soon.

The code behind this form handles the events triggered
by clicking on the Cancel button [Private Sub cmdCancel_
Click()] or the Process Index File button [Private Sub
cmdProcessIndexFile_Click()].

This code also handles the events of clicking on any of the
Show Me buttons. These procedures have ShowMe in the
name, such as Private Sub cmdShowMeIndent1_Click().

Now let’s get to the meat of the matter.

Double click on ConvertIndexDOC2IndexIXML in the Modules
folder. Its code appears in the large code viewing area.

Notice the dropdown in the upper right of the window.

This module contains not only the primary procedure
IndexDOCtoIXML but also all the supporting subroutines it
calls. This dropdown lists all the procedures in this module
and provides a simple way to get to that code in the file.

Select IndexDOCtoIXML from the dropdown to see the main
code of this macro.

Scroll up a few lines to see a line of code that appears before
this procedure:

Option Explicit

If you write VBA, this line should be the first in your code,
as it is here. What this means is that you must declare every
variable you use, rather than simply allowing them to be
created on the fly. That way, if you mistype a variable name,
it will be flagged rather than created anew, saving a lot of
debugging time.

Above this line, from the top of the file down, are a bunch of
comments about the procedure that outline its structure and
approaches.

Okay, Public Sub IndexDOCtoIXML():

The Public part of that opening is what makes this procedure
visible when you View Macros. All the other procedures in
this module are Private, making them visible only to each
other within this module.

With the Public/Private mind-set, let’s take a sidestep over to
the other file in the Modules folder: GlobalDeclarations. This
file declares a bunch of global variables, which are variables
that hold their values the entire time this macro runs, as
opposed to variables that are private to the procedures
they’re used in. Private variables go away once their
procedure finishes running; public variables hold their values
until the macro IndexDOCtoIXML quits running.

This IndexDOCtoIXML macro repurposes old production
code that was part of a larger suite of utilities. This separate
GlobalDeclarations file is a remnant of that old structure. At
some point these variables could be brought into the main
ConvertIndexDOC2IndexIXML file. I haven’t bothered to do
that yet. And there could be a bunch of variables defined
here that are never used—another remnant.

Okay, back to Public Sub IndexDOCtoIXML():

This procedure essentially consists of two pieces: the first
analyzes and styles the index document and the other piece
writes the index out to IXML format. As I mentioned above,
this macro repurposes some old production code from 2005;
this is the first part that analyzes and styles the index file.

The part that writes out the IXML format (look for WriteIXML
in the procedure dropdown) is new and therefore the more
likely place for any bugs. However, the analysis part does
occasionally trip, not detecting formatting or misinterpreting
it or something. I have one trouble-child index document for
which my code detects no difference between the no-indent
and indented types of paragraphs and tags them all as Main.
Still working on this one.

So, got your boots on? We’re starting with the first part, the
analysis and style part. It’s 2005 code and I’m writing this
in 2018, having essentially dropped in the code and started
using it. Sort of the blind leading the blind here. Fortunately I
comment a lot.

The essence of this code is that you’ve been given an index in
a Word doc and have to figure out its index structure so that
the paragraphs can get tagged (styled) with the right heading
style: Main, Sub, Subsub, or Subsubsub.

The file opens with its variable declarations, then the error
handling. A message box is displayed that summarizes the
macro and provides an exit point. Variables are initialized,
then the macro removes any spaces that appear before or
after tab characters so that tabs used as indents can be more
easily found. And it removes whitespace from otherwise
empty paragraphs.

I’d like to point out a small piece of code that appears here
and many other places throughout this macro:

′ Flush bad kharma from failed find with wildcards
ActiveDocument.Range.Find.Execute FindText:=″^p″,
MatchWildcards:=False

When this original code was written back in 2005, Word had
a long-standing bug with its Find operation when used with
wildcards: If a Find with wildcards didn’t find its search text
then the next Find operation, with or without wildcards,
might fail even if its search text existed. I don’t know if this
bug is still present in Word. The easiest workaround, after
doing a Find with wildcards, is to just find something like
a paragraph mark; it doesn’t matter if it fails. Then do the
next search that matters. So sprinkled throughout this code
is that above pair of comment and code to work around that
bug.

Okay, we’re done with the prologue sort of stuff and have
reached the first main section of this code: analysis of the

index doc formatting, checking for empty paragraphs, then
initial tab(s), then indents. This section leads into the second
main section: displaying the results of the analysis via the
form frmProcessIndexFile.

For each type of formatting, paragraph indexes are saved in
arrays so that when a Show Me button on the form is clicked,
the appropriate paragraph is selected.

Then we have Section II: the form is displayed, reporting
the results of the analysis and presenting Show Me buttons
for highlighting paragraphs in the index document and
dropdowns for assigning the appropriate index heading style.

A new form object is created, and with the line

frmobjProcessIndexFile.Show

control is given to the code associated with the form
frmProcessIndexFile, discussed above.

Sections of the form are displayed or not, depending on
whether that formatting was found in the document.

The code associated with that form sets the values of many
global variables. When either the Process Index File or
Cancel button is clicked on the form, control returns to this
IndexDOCtoIXML procedure.

If the Cancel button is clicked, the global variable
gProcessIndexFile is set to False, but it’s set to True if the
Process Index File button is clicked. So Section III of this
macro, styling the paragraphs with the appropriate index
heading style, only happens when gProcessIndexFile is True.

If the Process Index File button is clicked, setting
gProcessIndexFile to True, then we step through a series of
Find and Replaces, starting with en dashes replaced with
hyphens.

Then we add the four index heading paragraph styles to the
index document: Main, Sub, Subsub, and Subsubsub. If any
of those styles happen to already exist in the document, the
error triggered is ignored.

Then we call the subroutine Attributes2Tags().

This subroutine searches the index document for italics,
boldface, underline, subscript, and superscript attributes and
surrounds them with IXML tags for those attributes.

Back at the main IndexDOCtoIXML procedure, we next
step through each of the formatting types, applying the
appropriate paragraph styles to the appropriate paragraphs.

After all that paragraph style changing is done, a couple
more Find and Replaces are done—removing tabs at
the starts of paragraphs and possibly removing empty
paragraphs, depending on a check box value.

And we’re done with the big first chunk of code. We’ve
analyzed the index document, presented the results, and
applied the paragraph styles.

So now that we know the index structure via the paragraph
style names, we can write the index out to IXML. This is done
in the WriteIXML() routine.

In WriteIXML(), we open by saving the current value of the
Smart Quotes setting. We’re going to be writing computer
code, which needs straight quotes, not curly, so we turn off
Smart Quotes.

After saving the path and name of the index document,
we create a new document and write the IXML header tags
to it. Then we step through each paragraph of the index
document, grabbing the text of the paragraph. The ending
paragraph return is stripped off, curly quotes are replaced
with straight, and the comma–closing quote mark pair is
reversed to closing quote mark–comma.

Next I check the paragraph text to see if it contains a cross-
reference.

I Split() the paragraph text at commas. This puts into
an array each chunk of the paragraph text separated by
commas. For example, the heading

Klefstad, Sue, 25, 60

would split into an array of four elements: Klefstad, Sue, 25,
and 60.

So headings containing commas need to be reunited into one
chunk of text: Klefstad, Sue.

Also, a paragraph that is a subsub heading needs to go into
the IXML file with its main and sub heading texts. So the
string variables sMainStr, sSubStr, and sSubSubStr hold their
values until replaced by new.

The string variable sCurrentLine strings those sMainStr,
sSubStr, sSubSubStr, and sSubSubSubStr values together,
separated by tabs. sCurrentLine is Spit() at the tabs into an
array of four elements (Main, Sub, Subsub, and Subsubsub)
that are written to the IXML document. Then the page
numbers are written to the IXML file as locators.

If a cross-reference was found in this paragraph, an IXML
record is added as a locator.

When all the paragraphs in the index document have been
looped through, then the closing IXML tags are written to the
IXML document.

The original Curly Quotes setting is restored.

The IXML document is saved as a text file in the same path as
the index document with the index document file name plus
the IXML extension. A message box is displayed showing this
information.

When the OK button of the message box is clicked, the macro
ends.

Versions and Changes
I have nothing to report at this point.

Contacting Me
Feel free to contact me: I’m Sue@SuetheIndexer.com.

There’s a good chance that I will not get back to you
promptly, not because I’m ignoring you but because I’m busy
with work.

Check out my website and my articles on indexes and
indexing.

mailto:sue@suetheindexer.com
http://suetheindexer.com/
http://suetheindexer.com/#articles

